142 research outputs found

    Experimental investigation of a circulating fluidized bed reactor to capture CO2 with CaO

    Get PDF
    [EN] Calcium looping processes for capturing CO2 from large emissions sources are based on the use of CaO particles as sorbent in circulating fluidized bed (CFB) reactors. A continuous flow of CaO from an oxyfired calciner is fed into the carbonator and a certain inventory of active CaO is expected to capture the CO2 in the flue gas. The circulation rate and the inventory of CaO determine the CO2 capture efficiency. Other parameters such as the average carrying capacity of the CaO circulating particles, the temperature and the gas velocity must be taken into account. To investigate the effect of these variables on CO2 capture efficiency we employed a 6.5 m height CFB carbonator connected to a twin CFB calciner. Many stationary operating states were achieved using different operating conditions. The trends of CO2 capture efficiency measured are compared with those from a simple reactor model. This information may contribute to the future scaling up of the technology.The work was possible thanks to a contract with the companies Endesa and Hunosa and to the CaOling project funded by the European Commission FP7. N Rodríguez acknowledges a fellowship awarded by FICYT. The assistance of B González, F Fuentes and I Rodríguez during the experiments and sample analysis is also acknowledged.Peer reviewe

    Experimental investigation and model validation of a CaO/Ca(OH)2 fluidized bed reactor for thermochemical energy storage applications

    Get PDF
    The CaO/Ca(OH)2 hydration/dehydration chemical loop has long been recognized as a potential candidate for application in energy storage systems for concentrated solar plants. However, the technology still remains at a conceptual level because little information has been published on the performance of the key reactors in the system. In this work, we experimentally investigate the hydration and dehydration reactors in a 5.5 kWth batch fluidized bed reactor, in conditions relevant to larger systems (superficial gas velocities of up to 0.53 m/s, temperatures of up to 500°C for dehydration, input H2O(v) fractions between 0 and 0.8 etc.). Furthermore, to assist in the interpretation of the experimental results, a standard 1D bubbling reactor model has been formulated and fitted to the experimental results by including kinetic information at particle level independently measured in a thermogravimetric apparatus. The results indicate that the hydration reaction is mainly controlled by the slow kinetics of the CaO material tested while significant emulsion-bubble mass-transfer resistances were identified during dehydration due to the much faster dehydration kinetics.The financial support provided by the European Commission under the 7th Framework Program (StoRRe Project GA 282677) is acknowledged. Y.A. Criado thanks the Government of the Principality of Asturias for a Ph.D. fellowship (Severo Ochoa Program).Peer reviewe

    Continuous CaO/Ca(OH)2 Fluidized Bed Reactor for Energy Storage: First Experimental Results and Reactor Model Validation

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Industrial and Engineering Chemistry Research, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acs.iecr.6b04105Novel thermochemical energy storage systems that employ fluidized beds of CaO/Ca(OH)2 for hydration/dehydration reactions are under development because of the inherent advantages of the low cost of the materials and their relatively high temperature operation windows (450 °C–550 °C). We report in this work the results of the first steady state experiments conducted in a new pilot plant designed to test the concept under realistic reactor conditions. The pilot has a fluidized bed reactor with an internal diameter of 0.108 m and a height of 780 mm fed continuously with gas and solids as well as heat exchangers to supply/extract the required reaction heat. The experimental results during dynamic and steady state periods were fitted to a KL reactor bubbling bed model, using kinetic parameters from thermogravimetric studies and a single crossflow factor. The resulting continuous reactor model will serve as useful tool for the continued scaling up of this technology.Financial support provided by the European Commission under the 7th Framework Program (StoRRe Project GA 282677) is acknowledged.Peer reviewe

    Simulación del proceso de captura de CO2 mediante los ciclos de carbonatación/calcinación de CaO integrado en plantas de producción de energía

    Get PDF
    La tecnología de captura de CO2 basada en los ciclos de carbonatación/calcinación de CaO cuenta con un gran potencial de aplicación como tecnología emergente de captura de CO2 tanto en configuraciones de proceso en post-combustión aplicado a un gas de combustión, como en configuraciones en pre-combustión para generación de un gas rico en hidrógeno. Esta tecnología de captura de CO2 se basa en la reacción de un sorbente basado en CaO con el CO2 presente en una corriente gaseosa, y en la reacción inversa de calcinación del CaCO3 a mayor temperatura en una atmósfera concentrada en CO2. La principal ventaja de este proceso se basa en que prácticamente toda la energía introducida en el calcinador se recupera en la etapa de carbonatación y en forma de corrientes gaseosas y sólidas a alta temperatura. Debido a esta eficiente recuperación de energía, esta tecnología representa una de las opciones de captura de CO2 con mayor potencial de integración energética y de reducción de la penalización energética con respecto del proceso sin captura de CO2. Con el fin de evaluar este potencial, el principal objetivo de este trabajo ha sido analizar diversos procesos de conversión de energía (a electricidad, calor y/o hidrógeno) que integran un sistema de captura de CO2 basado en la reacción de carbonatación del CaO con el CO2, para conseguir una integración entre ambos sistemas que, bajo unas condiciones de operación razonables, reduzca al mínimo la penalización energética derivada de la captura de CO2. Concretamente, se han estudiado las configuraciones de este proceso como tecnología de captura de CO2 en post-combustión en centrales térmicas (CT) de carbón para producción de electricidad, y como tecnología de captura de CO2 en pre-combustión en procesos de producción de hidrógeno y/o electricidad mediante reformado de gas natural con vapor. En su aplicación como tecnología de captura de CO2 en post-combustión, una de las configuraciones más prometedoras en un corto/medio plazo es la implantación de este proceso de carbonatación/calcinación a CT existentes de carbón, debido a que la conexión con la CT existente se realiza fácilmente introduciendo el gas de combustión directamente en el carbonatador del sistema de captura de CO2, permaneciendo inalterado el funcionamiento de la CT existente. La resolución de un modelo de reactor de carbonatación integrado en un modelo de simulación global del proceso de captura de CO2 ha confirmado que es posible obtener eficacias de captura de CO2 entre 70 y 90 % bajo diferentes estrategias de operación. La eficiencia eléctrica neta obtenida es máxima operando el sistema de captura de CO2 con bajos aportes de sorbente fresco, ya que la alta circulación de sólido entre reactores en estos casos maximiza la producción de vapor para generación de electricidad en un nuevo ciclo de potencia. Penalizaciones energéticas en torno a 7.5-8.5 puntos porcentuales con respecto del sistema sin captura de CO2 han sido demostradas operando con bajos aportes de sorbente fresco (correspondientes a un valor de purga ~2 % del total de sólidos circulando desde el calcinador). Se ha planteado una configuración alternativa adecuada para una CT de carbón de nueva construcción que consiste en una mayor integración entre los componentes del sistema de captura de CO2 y la caldera de la CT, y que permite mejorar la eficiencia de producción eléctrica con respecto de la configuración anterior para CT existentes. En concreto, la configuración estudiada propone aportar la energía necesaria en el calcinador mediante la circulación de una corriente de sólidos calientes desde la caldera de la CT. Los resultados obtenidos de la simulación de este proceso han confirmado la menor penalización energética asociada a esta configuración, que ha resultado en torno a 7 puntos porcentuales de rendimiento operando con bajos aportes de sorbente fresco. En estas condiciones, se han obtenido eficacias de captura de CO2 en el carbonatador en torno al 90 %. A pesar de la eficiente recuperación de energía en el proceso de carbonatación/calcinación, uno de los objetivos prioritarios en este proceso es conseguir calcinar el CaCO3 formado a la menor temperatura posible para reducir el consumo de energía en el calcinador, y minimizar problemas derivados de la fusión de cenizas y/o de la desactivación del sorbente. En este trabajo se ha llevado a cabo la realización de una primera aproximación al modelado de un calcinador de lecho fluidizado de un sistema de carbonatación/calcinación para capturar CO2 con CaO, con el objetivo de determinar las condiciones de operación que permiten alcanzar eficacias de calcinación elevadas a temperaturas moderadas y tiempos de residencia razonables para este tipo de reactor. Incluyendo una cinética real de calcinación, determinada experimentalmente mediante análisis termogravimétrico, las predicciones del modelo apuntan que operando con un inventario de sólido en el rango de 800-1200 kg/m2 (equivalente a un tiempo de residencia del sólido de 2-3 min) y temperaturas en torno a 900-910ºC, es posible conseguir eficacias de calcinación superiores al 95 %, equivalentes a un contenido en CaCO3 inferior al 1 % (en moles) en la corriente de sólidos que abandona el calcinador. En su aplicación como tecnología de captura de CO2 en pre-combustión, se ha estudiado el proceso de reformado de gas natural con vapor con captura in situ de CO2 con CaO para producción de hidrógeno y/o electricidad (SER, acrónimo del inglés Sorption Enhanced Reforming). Este proceso propone introducir el sorbente basado en CaO en el reactor de reformado con el fin de mejorar la eficiencia de producción de hidrógeno, disminuir la complejidad del proceso y reducir los costes de producción de hidrógeno con respecto de la tecnología actual más extendida de producción de hidrógeno. Se ha desarrollado un modelo de simulación de una planta de producción de hidrógeno basada en este proceso SER con el fin de demostrar su potencial como tecnología de producción de hidrógeno, en el cual los reactores de reformado/carbonatación y de calcinación son dos reactores de lecho fluidizado conectados entre sí operando a presión cercana a la atmosférica. Se han obtenido producciones de hidrógeno de hasta 2.8 moles de H2 por mol de CH4 equivalente en el proceso SER, considerablemente más elevadas a las obtenidas mediante la tecnología convencional basada en el reformado catalítico de gas natural con vapor (~2.3 moles de H2 por mol de CH4 equivalente). Además, el consumo de gas natural ha resultado casi en un 20 % inferior al del proceso convencional a pesar de la energía consumida en la regeneración del CaCO3, y en una eficacia de captura de CO2 global cercana al 100 %, demostrando así las ventajas potenciales de este nuevo proceso. Se ha estudiado una configuración alternativa para este proceso SER que propone añadir un material de Cu al sistema con el fin de suministrar la energía necesaria en la calcinación del CaCO3 mediante la reducción exotérmica del CuO empleando CO, H2 ó CH4 como agentes reductores. Este nuevo proceso se lleva a cabo en un sistema de reactores de lecho fijo operando en paralelo, en el cual la presión y temperatura de los reactores se va modificando para favorecer las distintas etapas de producción de H2, oxidación del Cu y calcinación de CaCO3/reducción de CuO. Los resultados obtenidos de la simulación de esta nueva configuración del proceso SER han demostrado la posibilidad de alcanzar una producción global de 2.6 moles de H2 por mol de CH4 equivalente alimentado al proceso y una eficacia global de captura de CO2 del 94 %, que continúan siendo mejores que las del proceso convencional de producción de hidrógeno. La existencia de una etapa de producción de hidrógeno a alta presión en este último proceso basado en la combinación de los ciclos de Ca/Cu permitiría emplear el hidrógeno generado como combustible en la turbina de gas de un ciclo combinado de gas natural (CCGN) para producir electricidad con bajas emisiones de CO2. Se ha analizado y propuesto un posible diseño de una central de CCGN con captura de CO2 integrada con el proceso de producción de hidrógeno basado en los ciclos de Ca/Cu, con el fin de analizar la influencia de los principales parámetros de operación en el funcionamiento global de dicha central eléctrica. Se ha demostrado que el uso de un combustible rico en hidrógeno influye notablemente en la potencia eléctrica generada en la turbina de gas del ciclo combinado. Desde el punto de vista de la eficiencia eléctrica y de las emisiones de CO2, se han escogido unas condiciones de operación óptimas para el proceso basado en los ciclos de Ca/Cu que permiten obtener una eficiencia eléctrica neta cercana al 51 % con una eficacia global de captura de CO2 del 90 %, equivalente a unas emisiones específicas de 40 gCO2 emitidos/kWh. Comparado a otros procesos de producción de H2 integrados con un CCGN para producir electricidad con bajas emisiones de CO2, se demuestra el potencial que presenta este proceso de producción de hidrógeno como tecnología de captura de CO2 en pre-combustión en centrales de CCGN. Finalmente, se ha preparado y caracterizado un material de cobre adecuado para este proceso de producción de hidrógeno basado en los ciclos de Ca/Cu que cumple los principales requisitos necesarios en lo que respecta a contenido en cobre, reactividad y estabilidad química y mecánica con los ciclos de oxidación/reducción. Se ha estudiado la cinética de reducción de este material de Cu en condiciones de concentración y temperaturas típicas de la etapa de reducción/calcinación de este proceso, y se ha demostrado que el modelo cinético de núcleo decreciente predice adecuadamente el comportamiento de este material tanto en forma de pellet como en polvo. Los valores obtenidos para la energía de activación y el orden de la reacción se encuentran dentro del rango de los publicados en literatura para materiales con alto contenido en Cu

    Post-combustion calcium looping process with a high stable sorbent activity by recarbonation

    Get PDF
    [EN] This paper presents a novel sorbent regeneration technique for post-combustion calcium looping CO2 capture systems. The advantage of this technique is that it can drastically reduce the consumption of limestone in the plant without affecting its efficiency and without the need for additional reagents. The method is based on the re-carbonation of carbonated particles circulating from the carbonator using pure CO2 obtained from the gas stream generated in the calciner. The aim is to maintain the CO2 carrying capacity of the sorbent close to optimum values for CaL post-combustion systems (around 0.2). This is achieved by placing a small regeneration reactor between the carbonator and the calciner. This reactor increases slightly the conversion of CaO to carbonate so that it exceeds the so-called maximum CO2 carrying capacity of the sorbent. This increase compensates for the loss of CO2 carrying capacity that the solids undergo in the next calcination-carbonation cycle. Two series of experiments carried out in a thermogravimetric analyzer over 100 cycles of carbonation-recarbonation-calcination show that the inclusion of this recarbonation step is responsible for an increase in the residual CO2 carrying capacity from 0.07 to 0.16. A conceptual design of the resulting capture system shows that a limestone make-up flow designed specifically for a CO2 capture system can approach zero, when the solid sorbents purged from the CaL system are re-used to desulfurize the flue gas in the existing power plant.We thank the European Commission for the financial support received through the “CaOling” Project, funded under the 7th Framework Programme.Peer reviewe

    Heat requirements in a calciner of CaCO3 integrated in a CO2 capture system using CaO

    Get PDF
    7 pages, 8 figures, 1 table.-- Available online on Jun 12, 2007.Several systems for CO2 capture using CaO as regenerable sorbent are under development. In addition to a carbonation step, they all need a regeneration step (calcination of CaCO3) to produce a concentrated stream of CO2. Different options for calcination may be possible, but they all share common operating windows that appear when the mass and heat balances in the system are solved incorporating equilibrium data, sorbent performance information, and fuel composition (sulphur and ash content). These relatively narrow operating windows are calculated and discussed in this work. Due to sorbent performance limitations, low carbonation levels of the sorbent in the carbonator are expected and the heat demand in the calciner is dominated by the heating of inert solids flowing in the carbonation chemical loop. High make up flows of fresh limestone reduce this effect by increasing the average reactivity of the sorbent, but they also increase the heat demand in the calciner to calcine the fresh feed of limestone. Hence, an optimum level of sorbent activity appears under different operating conditions, processes and fuel characteristic, and these are discussed in this work.This paper contains work from a project partially funded by the European Commission (C3Capture and ISCC projects) and the project CENIT-CO2 in Spain, where we acknowledge funding from Union Fenosa SA. G. Grasa acknowledges a grant under the "Juan de la Cierva" program.Peer reviewe

    Oxy-fired fluidized bed combustors with a flexible power output using circulating solids for thermal energy storage

    Get PDF
    This paper presents a power plant concept based on an oxy-fired circulating fluidized bed combustor (oxy-CFBC) combined with thermal energy storage on a large scale. The concept exploits to full advantage the large circulation flows of high temperature solids that are characteristic of these systems. Two solid storage silos (one for high temperature and the other for low temperature solids) connected to the oxy-fired CFBC allow variability in power output without the need to modify the fuel firing rate and/or the mass flow of O2 to the combustor. During the periods of high power demand the system can deliver additional thermal power by extracting heat from a series of fluidized bed heat exchangers fed with solids from the high temperature silo. Likewise, during period of low power demand, the thermal power output can be reduced by using the energy released in the combustor to heat up the low temperature solids on their way from the low temperature silo to the oxy-CFBC and storing them in the high temperature silo located below the cyclone. A preliminary economic analysis of two designs indicates that this highly flexible system could make this type of power plant more competitive in the electricity markets where fossil fuels with CCS will be required to respond to a large variability in power output.Y.A. Criado thanks the Government of the Principality of Asturias for a Ph.D. fellowship (Severo Ochoa Program). B. Arias thanks the Spanish MINECO for the award of a Ramon y Cajal contract.Peer reviewe

    Evaluation of CO2 carrying capacity of reactivated CaO by hydration

    Get PDF
    [EN] Steam hydration has been proposed as a suitable technique for improving the performance of CaO as a regenerable sorbent in CO2 capture systems. New hydration experiments conducted in this study, confirm the reported improvements in the capacity of sorbents to carry CO2. An examination of the textural properties of the sorbent after hydration and mild calcination revealed a large increase in the area of reaction surface and the formation of a fraction of pores ≈20 nm diameter that enhance the CO2 carrying capacity and increase the carbonation reaction rate. However, these changes in textural properties also lead to lower values of crushing strength as measured in the reactivated particles. Experiments conducted with a high hydration level of the sorbent (Ca molar conversion to Ca(OH)2 of 0.6) in every cycle produced a sixfold increase in the sorbent residual CO2 carrying capacity. This improvement has been estimated to be achieved at the expense of a very large consumption of steam in the system (about 1.2 mol of steam per mol of captured CO2). The trade off between the improvements in CO2 capture capacity and steam consumption is experimentally investigated in this work, it being concluded that there is need to design a comprehensive sorbent reactivation test that takes into account all of the hydration reactivation process.This work is partially supported by the European Commission under the 7th Framework Programme (CaOling project). I. Martínez thanks Diputación General de Aragón for the F.P.I. fellowship and MICINN for the F.P.U. fellowship.Peer reviewe

    Kinetics of calcination of partially carbonated particles in a Ca-looping system for CO2 capture

    Get PDF
    Post-combustion CO2 capture based on the Ca-looping process (CaL) is a promising technology under development based on the reversible reaction between CaO and CO2 to form CaCO3 and the regeneration of CaO by calcination of CaCO3 in a rich CO2 atmosphere. This work is focused on the study of the calcination kinetics with typical solid conditions expected in these systems. Calcination rates of carbonated materials derived from two limestones have been measured at different numbers of carbonation–calcination cycles, as a function of the temperature and CO2 partial pressure. It has been observed that the calcination reaction is chemically controlled for particles below 300 μm of particle size, because internal mass transfer is negligible even under the presence of CO2 in the reaction atmosphere. The calcination rate (expressed per moles of initial CaO) depends upon the calcination temperature and CO2 partial pressure, whereas the CaCO3 content and/or particle lifetime do not affect the reaction rate. The basic kinetic model by Szekely and Evans is shown to be valid to fit the new data. On the basis of these results, it is shown that calcination temperatures between 880 and 920 °C could be sufficient to achieve nearly complete calcination conversion at a typical solid residence time of circulating fluidized-bed calciner reactors (2–3 min) in the CaL system.This work is partially supported by the European Commission under the 7th Framework Programme (CaOling project). Financial support for I. Martinez during her PhD studies is provided by the FPU programme of the Spanish Ministry of Research and Innovation.Peer reviewe
    corecore